Project Corn Star: Getting Boosted With Huron Speed Part 2

If you’ve been keeping up with Project Corn Star, you’ll know that we left you on a bit of a cliff hanger last week. If you don’t know what’s going on with our project fourth-gen F-body, then bring yourself up to speed here and here–and also, shame on you. Corn Star is not only our first E85-fueled build (thus its name), it’s also our first turbo build. In short, we are in the process of adding a Huron Speed turbo kit to our 2002 Chevrolet Camaro project car.

We last left you as we were plumbing the life-giving blood of our turbo system by tapping it into our lubrication system. After plumbing both drain and feed lines for our turbo, we were almost ready to get our new 370 in the car. And though it looked like we were almost ready to introduce our engine to its new home, there were a few things to tie up before the drivetrain was ready to go.

Tying Up Loose Ends

Before the engine went back into the car, we changed the spark plugs to a colder heat range to help prevent any possibility of detonation with our newly found boost. Jon Ojczyk, owner of Huron Speed, recommended the use of NGK TR6 plugs gapped at .035 inch. The tighter gap will help fight spark blow-out at higher boost pressures. However, if our project moves north of 700 rwhp, we will be switching over to a BR7ES—a heat range colder than the TR6s.

Here you can see that the stock plug wires are back on the new spark plugs. This was merely temporary to keep the plugs safe as the engine went in. We swapped them later for the Accel 9000 set.

We also decided to use a set of Accel’s new Extreme 9000 ceramic spark plug wires (PN 9070C). The set we chose has 135-degree boots which make them perfect for clearing the new turbo manifolds on our new Blueprint 370 that Summit Racing sent us. Since the boots are made entirely of ceramic, they are ideal for our combo as there is no chance of them ever burning or melting due to extreme underhood temperatures.

You can see that the engine-side boot is made entirely of ceramic. This makes them virtually impervious to damage caused by heat.

Here is the Accel 9000 ceramic spark plug wires installed in the car. You can see that with their proximity to the manifolds, they'll save us a lot of inconvenience from burning plug wires.

The wire cores are 8mm Ferro-Spiral, ensuring every ounce of spark energy is being transferred. Accel says these wires will withstand up to 2,000 degree Fahrenheit without a problem. They’ve even taken blow torches to them multiple times to make sure. We could not have designed a better wire to work with our turbo setup.

After the flywheel is torqued to spec, we used a socket to drive home the new pilot bearing. Note the yellow mark on the flywheel, this is used to line up the clutch so that it remains perfectly balanced.

After using the alignment tool to keep the clutch disc in alignment while we threaded the pressure plate bolts, the clutch is torqued to spec. As we mentioned in our previous clutch install, our SPEC clutch is almost too pretty to cover up.

After the plugs were in and torqued in place, we were ready to install our new pilot bearing and reinstall our SPEC flywheel and clutch. After a quick inspection of the clutch discs, pressure plate, and flywheel, everything was in great shape and ready to go back together. After cleaning all the surfaces, we used the alignment tool and bolted everything up. For more in depth details of the clutch install, check out our install article you can read here.

Our T56 meets our 370 for the first time.

With the clutch in place, the T56 was lifted into place by hand and coupled with our new 370. Once the engine and transmission were finally coupled again, we were ready to head back to the lift to bolt our new setup to our chassis, that is after we removed the hot side we had previously mocked up beforehand. While it may have gone back into the car all as one piece, it was simpler for us to get it in the car first and then reinstall everything. We also installed the rack and pinion on the new BMR crossmember as well.

Reinstalling The Drivetrain

Huron Speed Project Corn Star E85 Fourth-Gen F-body Camaro

Plum bobs make getting the engine in the right position to mate back up with the chassis a lot easier. Taking your time here can save a lot of headache when the chassis is lowered.

Using plumb bobs, we made sure the new engine would line up with the chassis as we lowered the car onto its new powerplant. We were pretty close the first time but after a few adjustments, the new BMR crossmember was secured to the chassis and our drivetrain was officially in the car.

The engine back in the car minus the hot side of the turbo kit.

From this point, it was ultimately a matter of reconnecting our hard mounts until we were ready for our hot side to go back on. We reattached our steering linkage and bolted the transmission crossmember in place as well as our torque arm. Once all of the physical mounts were taken care of, we were ready to install the turbo hot side. But before we could do that, we needed to make some space for where our turbo would eventually live. 

Keeping Our Cool

Though our Huron Speed kit does a pretty amazing job at retaining almost all of our Camaro’s stock equipment, including our front sway bar, there are a few things that need to be moved out of the way before the setup can go back into the car, one of which are the stock cooling fans. The fans would interfere with where the turbo now sits and they need to be relocated.

Our stock fan was pulled before the engine went back in to make it a little easier on us.

To accomplish this, we turned to Derale for a set of their pusher fans (PN 16925). They are much slimmer than our factory fans and can easily sit on the opposite side of the radiator and push cool air through the system, instead of pulling as the original fans did. To get them in place, while we were installing our intercooler, we moved our windshield washer fluid bottle out of the way to access the “front” of the radiator.

Our new fans were slightly larger than the opening would allow, so we actually notched the radiator support to accommodate the lower portions of the fans. Not only does this make them look like they were designed specifically for the car, it makes for a much cleaner installation.

You can see that we've notched the radiator core support to allow both of our Derale cooling fans to fit side by side. They install simply with push locks that pass through the cooling fins on the radiator and are trimmed afterward.

As for the wiring, we used the car’s factory “trigger” wires to fire the included relays which are drawing power from a nearby source. Our fans support high and low speeds and thus will function as the factory fans did. On the stock wiring harness, the blue wire is power for Fan 1 and grey is ground. For Fan 2, the white wire is power and black is ground. We simply used the blue and white wires to trigger the new relays provided by Derale.

Getting Hot In Here

Before bolting the hot side piping to the exhaust manifolds, we wrapped them in the supplied heat wrap. This will help to keep under-hood temperatures down as well as protect all of our components that may be routed close to our new turbo system. We overlapped ours quite a bit and consequently ran out of wrap before we could fully cover the pipes. However, a quick call to DEI resulted in the additional exhaust wrap (PN 010120) needed to complete the job. However, while it was on its way, we moved forward with hooking up some of our ancillary components.

We used speed wire to secure our heat wrap. You can also buy specialized clamps for the procedure but this worked just fine for us.

As you can see, we ran out of heat wrap prematurely. It may have gone a lot further had we not overlapped it as much as we did, but we decided to just get another 50-foot roll to finish it up.

Next up was to attach the Turbosmart HyperGate wastegate. One thing to note here is that you’ll need an additional V-band clamp for the wastegate if you have the recirculating kit as we did. However, as of this writing, Huron Speed has moved to a vent-to-atmosphere version of the kit and the third clamp isn’t necessary. If you do have this kit, getting the downpipe and recirculating pipe from the wastegate to align is a bit of a hassle. The best advice is to take your time with it and leave all of the V-band connections loose so you have some wiggle room to play with when aligning all of the pipes. After playing with the downpipe directly off the turbo, we got our system all lined up.

It can seem like the recirculation pipe on the wastegate is impossible to line up, but if you leave your connections loose, it’s simply a matter of working them around until they do. However, Huron’s new design actually eliminates this feature and vents the wastegate to atmosphere, eliminating the process.

Since the wastegate was virtually our last component of the hot side, we were ready now to turn our attention to the cold side. With the intercooler already in place, it was simply a matter of connecting three pipes to the turbo outlet, ends of the intercooler, and one going to the car’s throttle body. The process is fairly straightforward, but the air pump for the vehicle’s emission system will have to be moved or not used.

Here our front mount intercooler (FMIC) is mounted by the cold side is not yet connected to the turbo or intake. This was our next order of business.

Connecting the intercooler to the compressor housing and the throttle body is a relative straightforward operation and simply requires the use of the provided silicone couplers and clamps.

Another consideration here is where the charge piping enters the engine bay. It passes through a hole that is partially obstructed by one of the fuse blocks on the driver’s side. We simply loosened ours to pass the pipe through and tightened it back down once it was in place. Some choose to trim the plastic on the fuse block, but we found this to be unnecessary.

You can see that the air pump for the emissions system needs to be moved out of the way to snake the charge pipes through the hole seen right below the fuse box.

The hot and cold side were now virtually complete. Our last step was simply inserting the IAT sensor and connecting the charge pipe to the throttle body.

The final piece of our cold side is the Turbosmart Race Port blow-off valve. A word to the wise here, Turbosmart offers two styles of the Race Port. One with their proprietary flange and one with the HKS/TiAL-style flange. The Huron Speed kit is designed with the HKS/TiAL style flange, so be sure to order PN TS-0204-1104 if you buy the blow-off valve separately. We learned this the hard way, but with the right part in hand, it was a simple bolt-on affair.

Here you can see the blow-off valve on the charge pipe directly exiting the intercooler.

With everything on both the cold and hot side taken care of, we installed our tubular lower control arms from BMR. We also reconnected all of the wiring, fuel lines, and vacuum hoses under the hood.

Getting our new BMR tubular lower control arms into place was a breeze. We will, however, need an alignment once we get Corn Star on the streets.

We also, received the rest of our exhaust wrap and finished wrapping our hot side.

All wrapped up and ready to go. We also installed our air filter on the intake of our turbo. You want to install this before the upper radiator hose, otherwise it will be inaccessible since it sits above the cross over piping and below the radiator hose.

Suck N’ Blow

With most of the larger tasks complete, we moved on to finishing up the smaller stuff. We started by mounting our vacuum manifold to the the driver’s side fender, just behind the fuse block. We then taped it into the hose that feeds into the back of the intake manifold from the brake booster. This will give us a manifold reference for our blow-off valve, boost gauge, Hobbs switch, and future boost controller. We connected it to the vacuum manifold with 1/2-inch T and hose all the way to the vacuum manifold.

We decided to mount our vacuum manifold in a neutral area so that all of our accessories could reach it easily. The red wire is our trigger to our second fuel pump that we will wire into a Hobbs switch that will activate at anything over 4 pounds of boost. From here we ran a 1/2-inch vacuum line up to the brake booster line.

Once the main line to the vacuum manifold was run, we connected our ancillary devices with 1/4-inch vacuum hose. Needless to say, it’s important that the blow-off valve have a manifold-referenced line, otherwise it won’t function properly when you close the throttle. The wastegate, on the other hand, was referenced directly from the compressor outlet. This will ensure that there is no lag between the two and will help ensure our build stays safe. The Hobbs switch was wired to a nearby 12-volt source and will trigger our secondary fuel pump relay at the rear of the car when it sees anything over 4 pounds of boost.


Since our build will be producing substantially more power than the car’s previous setup, we asked JE Reel to send us a driveshaft that would be more up to the task of transferring what we hope will be more than 600 rwhp. They sent us a 3-inch chromoly piece that should be more than up to the challenge.

The new driveshaft from JE Reel is capable of handling much more power than our factory aluminum piece and the BMR driveshaft safety loop will keep our Camaro from catapulting itself should anything fail.

Installing the shaft and the loop were a breeze.

To ensure the car doesn’t catapult itself at the track, BMR also sent us a driveshaft safety loop (PN DSL001) to pair with our stronger driveshaft. This will prevent any unnecessary air time in the rare case the driveshaft can’t handle the power—though this is very unlikely considering the piece JE Reel provided. The weak link here will be our 10 bolt, though we will address that as well in an upcoming article.


With the end of our install in sight, we turned our attention to the exhaust system. This, astonishingly, is one of the only areas that you will need to fabricate any piece of this kit. If we were running the exhaust straight out of the bumper, we wouldn’t have had to fabricate anything. And while that might seem pretty cool, we are looking for a more subdued sounding car for street duties, so routing the exhaust out of the bumper was out of the question.

Fabricating the exhaust was just about the only thing about that kit that wasn’t bolt on. We used 3-inch mandrel bent stainless steel tubing to fabricate ours, but a local exhaust shop should be able to knock this out for you relatively easy.

Using 3-inch stainless steel bends and piping, we hand fabricated a system that would meet up with the F-body’s standard cat-back exhaust. Luckily, we have the capabilities to do this in-house, but a competent exhaust shop should easily be capable of the same results. In the future, we might go with something a little bit more aggressive, but for now Corn Star will be a silent killer.


With our Camaro almost ready to rip, it was time to top off the fluids and make sure everything was primed. Since this is a brand new motor, we chose to use a break-in oil from Joe Gibbs. This oil contains a lot of zinc which will prevent any of the new components from tearing one another up during break-in and is specially formulated just for this task. Firing up a new build can be nerve racking enough as it is, you shouldn’t have to wonder if your oil is going to do its job. 

We will be using the oil to get the car up and running and flush out the assembly lube before changing it out with more of the same oil. This ensures anything that might have been over looked will get filtered out immediately and the assembly lube will be removed from the system.

We refilled the transmission with Redline D4 ATF and refilled the power steering system. We also refilled the clutch master with DOT 4 fluid and bled it using our Tick speed bleeder—which made short work of an otherwise difficult job.

With everything primed and ready to go, we just had to give the computer the right information.

Base Tune

Though we will be taking Corn Start to Accelerated Racing Solution in Rancho Cucamonga, California for final tuning, we put a base tune in the car to get it fired and brought up to temperature so that we could check for problems and leaks before it headed there. For that, we turned to HP Tuners.

Joe Trujillo dials in our tune to get the car running and up to temp.

With future boost levels in mind, we upgraded Corn Star’s operating system to a 3 bar custom OS. While we won’t use all 3 bar right now, it makes it easier to do so if we decided it needs it in the future. We also converted the car to speed density, eliminating the need for a MAF. Westech was kind enough to send us over a base tune that we could dial in once the car was running. With the FIC injector data in the computer and the system set for open loop operation, we were ready to light the candles on Corn Star.

Light It Up

After some minor tweaking on the tune, our Camaro immediately fired off and settled into an idle. We then brought it up to 2,000 rpm and held it there for 15-20 minutes. This ensures all the components inside our new BluePrint engine seat properly and helps us get the car up to temperature more quickly to ensure we didn’t have any leaks.

Here we data logged the car to make sure everything looked good during cranking before firing the car. We used it to let us know if the car needed to be shut down immediately as well.

She’s alive!

With the car at 200 degrees, the fans were checked to make sure they were spinning in the correct directions and the car was shut down to cool off. As far as first fires goes, ours was relatively unexciting and everything was working just the way it should. After another heat cycle, the car was put in the air to check for leaks and to double check that every nut and bolt was tight and ready for the tuner.

We used a BMR turbo radiator hold down to replace our factory air box setup. It is polished stainless and looks fantastic under the hood of project Corn Star, matching the stainless from Huron perfectly.

We left the front bumper cover off the car, in case we needed to reach any of the components while tuning and to keep the car a little cooler on the dyno. With Corn Star back on terra firma, she was ready to head to Accelerated Racing Solutions for a tune and final power numbers. Numbers which you’ll have to wait until next time to find out. Stay tuned as we see what our boosted 370 is capable on corn.

Article Sources

About the author

Chase Christensen

Chase Christensen hails from Salt Lake City, and grew up around high-performance GM vehicles. He took possession of his very first F-body— an ’86 Trans Am— at the age of 13 and has been wrenching ever since.
Read My Articles

Late Model LS Power in your inbox.

Build your own custom newsletter with the content you love from LSX Magazine, directly to your inbox, absolutely FREE!

Free WordPress Themes

We will safeguard your e-mail and only send content you request.

LSX Magazine - The Late Model GM Magazine for Camaro


We'll send you the most interesting LSX Magazine articles, news, car features, and videos every week.

LSX Magazine - The Late Model GM Magazine for Camaro


We will safeguard your e-mail and only send content you request.

LSX Magazine - The Late Model GM Magazine for Camaro


Thank you for your subscription.

Subscribe to more FREE Online Magazines!

We think you might like...

Classic Chevy Magazine
Drag Racing
Engine Tech

LSX Magazine - The Late Model GM Magazine for Camaro

Thank you for your subscription.

Subscribe to more FREE Online Magazines!

We think you might like...

  • chevyhardcore Classic Chevy Magazine
  • dragzine Drag Racing
  • enginelabs Engine Tech

LSX Magazine - The Late Model GM Magazine for Camaro


Thank you for your subscription.

Thank you for your subscription.

LSX Magazine - The Late Model GM Magazine for Camaro

Thank you for your subscription.

Thank you for your subscription.